接入百度大脑表格文字识别技术,快速降低信息电子化录入成本

摘要

使用表格文字识别技术,对个人、商品、公示内容等纸质信息登记表进行识别,快速实现表格内容的电子化,用于登记信息的结构化整理和统计,大幅度降低信息电子化工作的人力录入成本,提升信息管理的便捷性

作者:wangwei8638

使用表格文字识别技术,对个人、商品、公示内容等纸质信息登记表进行识别,快速实现表格内容的电子化,用于登记信息的结构化整理和统计,大幅度降低信息电子化工作的人力录入成本,提升信息管理的便捷性

一.平台接入

此步骤比较简单,不多阐述。可参照之前文档:

image.png

二.分析接口文档

1.打开API文档页面,分析接口要求

image.png

   (1)接口描述

对图片中的表格文字内容进行提取和识别,结构化输出表头、表尾及每个单元格的文字内容。支持识别常规表格及含合并单元格表格,并可选择以JSON或Excel形式进行返回。

(2)请求说明

需要用到的信息有:

image.png

Body中放置请求参数,参数详情如下:

本接口为异步接口,分为两个API:提交请求接口、获取结果接口。这里有一个关键参数:is_sync,取值为“false”,需通过获取结果接口获取识别结果;取值为“true”,同步返回识别结果,无需调用获取结果接口。当然,能一次搞定的绝不用两次,只需设置该参数为“true”即可。

image.png

(3)返回参数                               

image.png

返回示例

image.png

2.获取access_token

image.png

image.png

三.识别结果

1.

image.png

识别结果:

image.png

2.

image.png

识别结果:

image.png

 3.

image.png

识别结果:

image.png

4.

image.png

识别结果:

image.png

结论:

识别结果方面:采用不同形式的复杂表格进行测试,识别结果比较准确,能够大大减少信息录入工作。

处理速度方面:每张图片处理时间在3-5s,可以接受。

四.源码共享

image.png

image.png

image.png

image.png

image.png

五.意见建议

1.整体识别效果还是不错的,识别结果的精确度还有待提高,细节处理还可以更完善。比如复杂表格识别文字串行,个别文字丢失或错误等。

2.对表格中有手写体文字的识别效果不好,建议增加对手写输入的识别。

最新文章

极客公园

用极客视角,追踪你不可错过的科技圈.

极客之选

新鲜、有趣的硬件产品,第一时间为你呈现。

张鹏科技商业观察

聊科技,谈商业。