AI 通过了艺术创作图灵测试,你根本分不出来作者是不是人

摘要

机器发展出了自己的美感

编者注:本文转载自微信公众号量子位(ID:QbitAI),编译整理:安妮,千平,极客公园已获转载授权。

各位亲爱的文化圈权威,今年不用再看画了:近年来最大的艺术成就已经发生了。

这项艺术成就的诞生地,不是北京、新加坡、柏林郊区颜料四溅的画室中,不是威尼斯双年展上。请记住它出现的地点:美国新泽西州新布朗斯维克(New Brunswick),就在 Turnpike 高速公路 9 号出口附近。


新布朗斯维克是美国罗格斯大学(Rutgers)的主校区所在地,这所学校的艺术与人工智能实验室(AAIL)就在这里。与其说这个实验室像一个艺术孵化器,不如说更像一个潦草的初创公司,里面全是小格子间、灰地毯、白板上乱糟糟地写满了那些跟技术有关的东西。。

然而就在这里,就在今年情人节那天,艾哈迈德(Ahmed Elgammal)教授让电脑运行了一个新的艺术生成算法,接着眼睁睁的看着这个 AI 创造出一系列让他震惊的画作。

两周之后,艾哈迈德搞了一次特殊的图灵测试:把这些电脑生成的画作,和几十幅博物馆藏级的油画混合在一起,看看人类是否能分辨出来。

测试结果看文章标题想必你也知道了。

在这个随机对照的双盲研究中,受试者无法区分出哪些是电脑的画作,哪些是人类艺术家的画作(参与测试的数据集,一组选自抽象表现主义作品,另一组选自 2016 香港巴塞尔艺术展)。事实上,电脑的画作常常被认为「更新颖」、「更具审美吸引力」。


随后同行评议的论文更是催生出一个让艺术界不安的传言:人工智能已经学会像毕加索那样作画。

时间回到 2012 年,那年罗格斯大学计算机科学系建立了 AAIL。这个实验室的任务很简单:专注于在艺术领域研发人工智能和计算机视觉算法。其后几年,AAIL 实验室推出的几种创新算法,激发了策展人、历史学家、收藏家、拍卖行的兴趣。

比方其中一种算法可以从创造力和影响力等方面,衡量一幅艺术作品的价值;另一种算法能分析画作,并根据艺术家、时期、类型等属性进行分类;还有一个鉴别赝品的算法,能够识别艺术家笔触中微妙的变化。

接下来就是水到渠成的事了:一个创造新作品的算法。

艾哈迈德用超过 8 万幅 15-20 世纪的西方绘画,对算法进行训练。基于这个庞大的数据集,他着手构建了一个称为生成对抗网络(GAN)的人工智能。GAN 已经能很好的生成鞋子和包包,但是在生成原创视觉艺术方面还不够好。

所以,他创造了一个创意对抗网络(Creative Adversarial Networks,简称 CANs)。

GAN 和 CAN 有何不同?GAN 的主要任务是模仿,而 CAN 需要创新。艾哈迈德在论文中指出,「CAN 生成的画作不同于传统的艺术标准流派」。

这些画作没什么可识别的特征,许多看起来非常抽象。这到底是 AI 无法模仿艺术作品的布局,还是尝试突破?这一切全是创新么?

几个月之后,再次面对上述问题时,艾哈迈德不再犹疑。「机器发展出了一种美感」,他说 AI 已经学会了如何作画。


与大多数技术突破类似,罗格斯大学的艺术算法背后,也是数千小时繁琐的实验室研究。在取得关键进展之前的三周时间里,艾哈迈德和两个助手对算法进行了大量的调整,试图让二进制代码的创作成果看起来更像人类的手笔。

面对这些挑战,这位 45 岁的 AAIL 主任一度感到沮丧,开始阶段这些画作既不好也不坏,它们站在了创意钟形曲线可怕的中点上。

为了解决这个问题,团队在算法中引入了更多「风格模糊」和「风格规范偏差」。这是一个微妙的平衡。与既有绘画风格距离太远,会让观众感到奇怪。而如果太近,电脑的画作又难免会让人感觉有模仿的痕迹。

再进行更多的风格调整之后,算法再次运行。

令人惊讶的是,可怕的事情没有再次发生,AAIL 团队搞定了这个算法。「构图和颜色都非常好」,艾哈迈德说团队成员都惊呼起来:「这幅画放在博物馆,肯定招人喜欢」。

但为什么这个算法产生的是抽象画,而不是肖像或者静物?

这被归因于创意对抗网络的进化。「我们喂给机器的艺术史,是从文艺复兴到现代,所以算法的学习进步也是沿着抽象美学这条线发展」,艾哈迈德说:「这很有趣,抽象是艺术史上的自然进步,而算法成功的捕捉到了这一点」。

换句话说,这个算法的所作所为,和许多人类艺术家一模一样。简单来说,艺术创作有点像嗑药,艺术品的视觉刺激必须有足够的「唤醒潜能」,来触发心理上的「快乐反应」。

计算机艺术是新兴学术领域的基石,它的历史可以追溯到 20 世纪 60 年代早期 Desmond Paul Henry 的「绘图机器」,被称为「数字人文」。


Henry 和他的绘图机

这些精巧的设计基于二战期间飞行员用于运送弹药的精准计算机完成,产生的图像都是由曲线组成,抽象且复杂。

20 世纪 60 年代的计算机艺术运动催生了更多机器创作的图片,比如从 Alfons Schilling 的低技术含量的「自旋艺术」到新泽西州贝尔实验室中的早期数字设计和动画制作。


旋转画/Alfons Schilling(1962)

1966 年,工程师 Billy Kluver 和 Fred Waldhauer 联手艺术家 Robert Rauschenberg 和 Robert Whitman 创立了贝尔实验室 (Art and Technology,E.A.T.),这是一个开创性项目,所有计算机生成的艺术都以它为基础。


Isola di San Lazzaro/Robert Rauschenberg(1996)

计算机创作过程极其艰辛,画面和数据必须通过老式键控打孔机呈现。这些穿孔卡片接连被放进一个房间大小的电脑里。由此产生的静态图像必须手动转换成可视的输出介质,比如钢笔、缩微胶片绘图机、行式打印机等。

随着新计算机技术的出现,机器创作艺术也在更新:点阵打印机艺术 (20 世界 70 年代),视频游戏艺术 (21 世纪),3D 打印艺术 (2010 年左右) 层出不求。

和各种各样的计算机艺术相比,艾哈迈德的 CAN 有它的独特之处:它的实时创作过程完全由 AI 完成,人类不能参与其中。

这是人类首次被排除在艺术创作流程之外。

和谷歌 Google 2015 年铺天盖地宣传的 AI 艺术项目 DeepDream 不同,在罗格斯大学 AAIL 的这个机器里,人工干预完全无效。只要打开电脑,艾哈迈德的算法就能自动创作。

相比之下,DeepDream 需要人类的参与,它会在一张图片上加入各种纹理,或者叫风格。这意味着 DeepDream 的作品实际上是由人类选择的输入图像决定的。


原图(左)与在 DeepDream 中经过十次迭代的生成图(右)

自动的艺术算法似乎能改变一切。曾有调查让人类对画作的意图、涵义、视觉结构等因素进行打分。结果表明,计算机的创作评分都高于人类艺术家。艾哈迈德教授说:「分数说明这些画是艺术,而且很吸引人。」

这些数字远远超过了统计学上的意义。在 2016 年香港巴塞尔艺术展上,59% 的作者无法猜测哪些是由机器创作的。在另一份调查中,75% 的受访者认为由算法制作的画作实际上是由人类生成的。

这些电脑生成的画作能与 Leonardo Drew、Andy Warhol、Heimo Zobernig 和 Ma Kelu 等艺术家的作品相媲美。大多数作品出现在 AAIL 实验中的艺术家都拒绝评论艾哈迈德的研究,除了一个人:Panos Tsagaris。


两幅 Tsagaris 的作品

这位希腊艺术家有一幅无题作品,是带有金色叶子装饰的混合材质画作,曾在 2015 年的巴塞尔艺术博览会上展出,后来被用作 AAIL 测试的样本。

Tsagari 说,人工智能艺术「令人着迷」,他认为这种算法与人类更多的是同伴关系而不是破坏性威胁。

「我很好奇随着技术的发展,这个项目将会如何进展,」Tsagari 说,「机器作画和人类创作看起来是一回事,把人工智能带到一个可以创造概念的层次,一系列的情感将会建立在它创造的画作基础上,这是一个全新的层次。」

美术史学家 James Elkins 没有那么乐观,他认为机器作画总是缺少一些深层次的东西。「这有点讨厌,因为 (算法) 不是根据社会环境、含义和表达目的来创作,而是根据艺术风格创作。」Elkins 说。这种狭义的有趣之处在于,它暗示着一幅画的风格就能让它成为一幅杰作。


美术史学家及评论家 James Elkins

Elkins 不相信艺术家们很快就会像鞋匠和出租车司机一样失业。「如果人类艺术家停止创作,那么电脑也会停止创作。」他说。

数字艺术平台 Rhizome 的艺术总监 Michael Connor 对此表示赞同。他描述了艺术家之间觉悟的鸿沟:「艺术创作并不是成为艺术家的唯一使命。还包括构建艺术体系、教学、创建品牌等。」

他认为艾哈迈德用算法产生的图像的艺术性,就和莫奈画作的赝品差不多:「这种算法艺术就像一种赝品,是机器学习人类文化时一种怪异的复制。」他补充说,「这并不一定是件坏事,就像罗马雕像一样,这些雕像是希腊原始人物的复制品,即使是复制品也可以随着时间的推移发展出内在价值。」


法国印象派画家莫奈的代表作《日出·印象》

艾哈迈德说,他的算法的学习曲线完全符合人类艺术家创作成熟的过程。

「在画家职业生涯的开始,像毕加索和塞尚这样的艺术家都从模仿接触过画家的风格起步,不管是有意识的还是无意识的。」他补充说,「之后到达某种程度时,他们才走出模仿阶段,探索新事物和新风格。他们从传统肖像画到立体派和野兽派,这正是我们试图实现的机器学习算法。」


毕加索《哭泣的女人》,立体派


Henri Matisse《马蒂斯夫人的画像》,野兽派

就像一个真正的新兴艺术家一样,这个算法会首次办它的「个机展」。《非人类:人工智能时代的艺术》展览将于今年 10 月在洛杉矶举办,将会有 12 幅在罗格斯大学研究中使用人工智能的画作。

首秀之后,艾哈迈德的算法还有更大的发展空间。这是因为罗格斯实验室的编程人员没有用全部「对照变量」提高算法产生的图像的「唤醒潜能」。在一定程度上唤醒潜能越高,人工智能对人类的影响就越大,人类越有可能购买它。

尽管人工智能创作之路从来不缺反对者,但这件事应该让画家和代表他们的经销商紧张,艾哈迈德称代码生成的图像随着时间的推移会变得更好。

他自信地说:「深入挖掘艺术有助通过编写代码推动算法探索新的艺术元素,我们将不断完善这些公式,提升新奇、惊喜、困惑、复杂性等美感体验。」


计算机生成图像的商业化探索能追溯到几十年前。

1964 年,贝尔实验室的工程师、早期计算机先驱 A.Michael Noll 进行了一项画图测试。他用一台 IBM 电脑和一个微缩胶片绘图仪,生成了一个模仿蒙德里安风格的算法。只有 28% 的受试者能正确识别哪些为计算机所作。令人震惊的是,59% 的受试者更喜欢生成的图像而不是蒙德里安的原版。


蒙德里安《百老汇的爵士乐》(1943)

第二年,Noll 的数字艺术作品在纽约 Howard Wise Gallery 画廊展出,这标志着计算机艺术首次出现在美国艺术画廊。《纽约时报》强烈批评了这一开创性的展览。Noll 说,公众的反应「令人失望」,没有一幅画作被购买。


1965 年四月 Noll 的《计算机生成图像》画展/图片来自 Compart

这次失败的展览没有削弱 Noll 对数字艺术未来的乐观态度,他在 1967 年写道:「计算机已经证明了自己在科学领域的价值,它还想证明在艺术领域的价值。」

但是,我们应该如何看待一个新的算法呢?把它们当成艺术创作者而不是艺术家的「工具」? 在现实生活中,这是个空洞的数字朋克情节:疯狂的科学家发明了一种比人类更人性化的机器。


这几幅画出自不同的画家

如果你关注当代艺术市场,就会发现其中的问题。一时间,从艺术学校到画廊和拍卖行,流行风格全是被称为「僵尸形式主义」(Zombie Formalism)的抽象画。比方说上面图中的几幅画,实际上都是出自不同的人类画家,有点像人类艺术伪装成算法的作品。

这可能有点反讽。为了重新获得先锋地位,并且在艾哈迈德教授下次图灵测试中脱颖而出,人类可能必须画得更像机器人。

如果「抽象废物」型的人类画家追随人工智能的脚步,在作品中注入一些「风格模糊」,也许能画得更好一点。

相关论文

CAN: Creative Adversarial Networks Generating「Art」by Learning About Styles and Deviating from Style Norms

摘要:

我们提出一个新的艺术创作系统。系统通过观看艺术作品和学习风格来产生新的艺术作品,并通过偏离所学习的风格来增加艺术觉醒潜力,从而使作品变得更有创造性。我们基于生成对抗网络建造,GAN 已经显示出学会基于给定分布生成新颖图像的能力。不过我们认为这个网络在产生创意作品方面能力有限,我们提出对其目标进行修改,使其能够通过最大化偏离已建立的分割,并最大限度的减少偏离艺术品分布来进行创作。


CAN 系统架构图
打开极客公园App阅读更多内容

最新文章

极客公园

用极客视角,追踪你最不可错过的科技圈。

极客之选

新鲜、有趣的硬件产品,第一时间为你呈现。

顶楼

关注前沿科技,发表最具科技的商业洞见。